
1 Copyright ©2015 CollabNet, Inc. All Rights Reserved. ENTERPRISE CLOUD DEVELOPMENT

Subversion 1.9 for Developers
Enterprise Features

2 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Outline

• Branch management
– When to branch

– When to merge

• Merging and merge tracking
– Why merge tracking (by use case)
– CollabNet merge management GUI
– Interactive conflict resolution

• Working copy management
– Sparse checkouts

– Changelists
– Peg revisions
– Externals

3 Copyright ©2015 CollabNet, Inc. All Rights Reserved. 3 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Branch management

4 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Know when to branch

• The “Never-Branch” Approach.

– Users commit their day-to-day work on /trunk.

– No merging required.

• The “Always-Branch” Approach.

– Each user creates/works on a private branch for every coding task.

– When coding is complete, someone merges the changes to a release branch.

– When a release is complete, someone merges the release branch to /trunk.

• The “Branch Based on Need” Approach.

– Some branches are used for long term development.

– When coding is complete, someone merges the changes to /trunk or a release
branch (later merging that branch to /trunk).

5 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Know when to merge

BEST PRACTICES

– Merge as often as feasible.

• Isolation can be useful, but don’t let it last too long.

• Avoid the big hit.

• The smaller the two ranges of change sets involved, the smaller the

chance of conflicts.

– Merge to close out a branch.

– Merge at key milestones.

• Production releases.

• Service pack releases.

6 Copyright ©2015 CollabNet, Inc. All Rights Reserved. 6 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Merging and merge tracking

7 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Merge tracking – why track merges?

• Automatically handle situations such as duplicate merges.

– Remembers previous merges.

– Prevents re-merging.

– Eliminates missed changes.

• Reduce errors and administration overhead.

– Teams that merge often will see increased productivity.

• Add auditibility and traceability.

– What code was merged when and where?

– Vital to certain industries with high demands on product safety, e.g. automotive,
aerospace, medical equipment, etc.

• Facilitate implementing more advanced branching strategies.

– Get the full advantages of parallel development on multiple branches.

8 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Merge tracking use case – why repeated merge?

Repeated merge:

– Tracks which change sets have been applied where.

– Avoids duplicate merges.

– Provides transitive merge information (next slide).

svn:mergeinfo

trunk:11-21

svn merge http://path_to_repo/branches/trunk .

9 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Merge tracking use case – why transitive merge?

svn:mergeinfo

/branches/BranchA:11-19

svn merge http://path_to_repo/branches/BranchA

svn:mergeinfo

/branches/BranchA:11-19

/branches/BranchB:11-20

svn:mergeinfo

/branches/BranchA:11-23

/branches/BranchB:11-20

Transitive merge:

– Merges are aware of contributions from other merges.

– Merge records include the contributions to the path being merged from.

– Merging does not revisit changes that were contributed

from a previous merge to another branch (duplicate merges).

svn merge http://path_to_repo/branches/BranchB

10 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Merge tracking use case – why cherry picking?

Cherry picking:

– Only applies a selection of revisions, not inclusive of all eligible merge candidates.

– Supports future range merges where the selected revisions are not revisited (no
duplicate merges).

svn:mergeinfo

/trunk:15

svn merge –r 13:15 http://path_to_repo/trunk

11 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Merge tracking use case – why child and parent
merges?

Child/Parent merges:

– Merge a child branch into its parent branch honoring merge resolutions from the
parent to the child (avoids duplicate merges).

svn:mergeinfo

/trunk:11-15

svn:mergeinfo

/trunk:11-19

svn:mergeinfo

/branches/BranchA:12-21

svn merge http://path_to_repo/branches/BranchA

12 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Merge tracking use case – why manual merge?

Record manual merge:

– Allows change sets to be marked/documented as merged though the merge was
done manually by the user.

– Creates a revision block to prevent a revision from being merged to a specific
branch.

svn:mergeinfo

/branches/BranchA:14

svn merge –r 13:14 –record-only

 http://path_to_repo/branches/BranchA .

13 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Merge tracking use case – why rollback merge?

Rollback merge:

– Undoes a merge (or any committed change).

– Allows the unmerged change to be remerged later.

svn merge –r 16:15

 http://path_to_repo/branches/BranchA

svn:mergeinfo

/trunk:13-14

There is no longer mergeinfo

associated with this branch

14 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Merge tracking – auditing

svn:mergeinfo

/trunk:15

svn merge –r 13:15 http://path_to_repo/trunk

Merge auditing:

– Merge data automatically added to svn:mergeinfo.

– Reports merge data using the mergeinfo operation.

– Blame and log operations can report based on this information.

15 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Merge tracking – auditing

• Property (svn:mergeinfo) set on files and directories records all merge
information.

• Merge history discovery

– Branches remember their origins.

– mergeinfo operation provides answers to the questions:

• What changes have I merged into a branch?

• What changes are eligible for merge into a branch?

• Traceability

– By recording what revisions exist on what paths, Subversion provides traceability
of what made it where.

– Automation is key to ensure the information is consistent and reliable.

– Switch --use-merge-history (single-character shortcut -g).

– log -g: includes what changes were merged by a commit.

– blame -g: shows the original committer and revision for each line in a file.

16 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Merge tracking – CollabNet GUI merge client

• CollabNet GUI Merge Client for Subversion.

– The goal of the client is simple: make merging easier.

– The CollabNet GUI Merge Client is packaged within:

• CollabNet Desktop - Eclipse Edition.

– Built on top of Eclipse and Subclipse.

– Can be used across multiple Eclipse projects (same repository).

• CollabNet Desktop - Visual Studio Edition.

– Built on top of Visual Studio and AnkhSVN.

– Desktops available at: http://www.open.collab.net/downloads/integrations/.

BEST PRACTICE

- Before performing a merge best practices can be considered:

• It is a best practice to not have any uncommitted changes in your working copy.

• Your working copy must be pointing to the area of the repository that you want the

merge results to be commited to.

• You should update the entire working copy to HEAD before beginning the merge.

• You shouldn’t have switched children in your working copy.

http://www.open.collab.net/downloads/integrations/

17 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

CollabNet GUI merge client – Select merge type

• Select the merge type

– Specify the type of merge you want
to perform.

– Visually confirm the merge type by
the associated diagram.

– Evaluate using the option to perform
pre-merge best practice checks and
provide warnings.

18 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

CollabNet GUI merge client – Select merge source

• Select the merge source

– Indicate from where you want to
merge.

– Defaults to the branch’s parent (i.e.,
where it was created from).

– Choose either all eligible
(unmerged) revisions or select
specific revisions to merge

– Completes pre-merge checks
successfully before displaying this
dialog.

Example: Range of Revisions

19 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

CollabNet GUI merge client – Select revisions

• Select the revisions (if chosen):

– This page will only list the revisions
that have not already been merged or
blocked (i.e., marked manually as
merged).

– You can cherry pick revisions to be
merged.

– You can see what revision had
changes, when it was committed, by
whom and what they said.

– You can see what was changed (in a
structural format) for each of the
candidate revisions.

Example: Range of Revisions – Cherry Picking

20 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

CollabNet GUI merge client – Select merge options

• Select merge options

– This dialog is standard for all merges.

– You can decide whether to have
interactive conflict resolution on text files
or defer resolution.

– You can determine how to handle binary
files that are in conflict.

– You can define how to handle property
values that are in conflict.

– You can select standard merge options
including the depth you want to go in
your working copy.

21 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

CollabNet GUI merge client – Change-set based merge

• Change-set merge:

– Only for CollabNet TeamForge users that
also have chosen to associate commits
with tracker artifacts.

– Select what to merge based on the
association between commits and
tracker artifacts.

• Benefits:

– Merging all changes related to a specific
tracker artifact (e.g.: a bug fix or new
feature) is a more natural workflow.

– One more level of traceability is
achieved.

– Integrated tools, processes and workflow
makes the team more productive.

22 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

CollabNet GUI merge client – Change-set based merge

• Select the change sets:

– Allows manual entry of artifacts or the ability to
select the desired ones using a query.

• Select the revisions:

– Allows you to see the Subversion revisions that are
associated with the selected artifacts.

– Provides you the ability to selectively choose which
revisions to merge using information on what
changes were in the revision and what was said about
the commit.

23 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Interactive conflict resolution
• An interactive response to conflicts encountered during the following

operations:

– Merge

– Update

– Switch

• Configurable behavior:

– Pre-specify directives like “always use the version from my merge source”,

– Selectively disable by using the --non-interactive option,

– … or disable permanently by a setting in your run-time config file:
'[miscellany] interactive-conflicts = no'

• resolve command:

– Allows you to interactively resolve conflicts later if you postponed them
earlier.

– --accept option:

• Lets you mark a conflict as resolved and resolve it by choosing a specific
version of a file (i.e., working copy or repository).

• Useful in resolving binary file conflicts.

24 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Interactive conflict resolution command line

• Command line opportunities to resolve conflicts:

$ svn up contrib/client-side/svnmerge_test.py

Conflict discovered in 'contrib/client-side/svnmerge.py'.

(e) edit - change merged file in an editor

(df) diff-full - show all changes made to merged file

(r) resolved - accept merged version of file

(dc) display-conflict – show all conflicts (ignoring merged version)

(mc) mine-conflict – accept my version for all conflicts (same)

(tc) theirs-conflict – accept their version for all conflicts (same)

(mf) mine-full - accept my version of entire file

(tf) theirs-full - accept their version of entire file

(p) postpone - mark the conflict to be resolved later

(l) launch - use external tool to resolve conflict

(h) help - show this list

Select: (p) postpone, (mf) mine-full, (tf) theirs-full,

 (s) show all options:

25 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

• Several options available when using a GUI client:

– Deal with the conflict later.

– Select a specific version of the file.

– Resolve the conflicts manually.

– Launch a graphical conflict resolution editor.

• Option to apply to all text conflicts in the current
merge.

• Finally, tell the client if you actually resolved the
conflicts.

Interactive conflict resolution GUI example

26 Copyright ©2015 CollabNet, Inc. All Rights Reserved. 26 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Working copy management

27 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Sparse checkouts

• Sparse checkouts are client-side, per-working-copy.

– Server has no record of a working copy’s structure (it can be made aware of what
an update should cover).

– There is no “profile” to create a similar working copy (though commands can be
scripted to do so).

• Selected depth is “sticky” – maintained across operations.

• Different depths can be mixed in one working copy.

• Like any client side functionality, this doesn’t require a 1.7 or later server to
utilize the feature:

– Legacy servers will send back information the client doesn't want.

– The client will just ignore it - it’s slow, but correct.

28 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Sparse checkouts (Cont’d)

• --depth option:

– Affected subcommands: update, status, info, switch and checkout.

– Sets depth values as it updates the working copy.

– Obsoletes the --recursive (-R) and --non-recursive (-N) options.

– Values:

• infinity (default): go as deep as exists.

• empty: updates will only pull in files or subdirectories already present and checkouts will pull in an empty
directory.

• files: updates will pull in any files not already present, but not subdirectories.

• immediates: gets a “high-level overview” tree (top level files and empty subdirectories).

• exclude: don’t include this path until and unless told to do so.

• Merging a sparsely populated directory (not a best practice):

– Non-inheritable svn:mergeinfo is set on the deepest directories present:
• Directories with depth == empty: The directory gets non-inheritable svn:mergeinfo.

• Directories with depth == files: The directory gets non-inheritable svn:mergeinfo. Any child files present
get inheritable svn:mergeinfo.

• Directories with depth == immediates: The directory and any child files present get inheritable
svn:mergeinfo. Any directory children present get non-inheritable svn:mergeinfo.

29 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Sparse checkouts – example usage

• Checkout an empty tree creating an empty working copy:

svn co --depth=empty http://.../A Awc

• Checkout only the top-level files and no subdirectories:

svn co --depth=files http://.../A Awc1

• Checkout only the top-level files and empty subdirectories (not sure what sub
trees you need, only want to pull them in as needed):

svn co --depth=immediates http://.../A Awc2

• Default depth is the same as pre-1.5 - infinity:

svn co http://.../A

http://.../A Awc2

30 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Sparse checkouts – example usage (Cont’d)

• Selective update still available (just updates the working copy respecting any
depth settings):

svn up Awc

• Pull in a sub tree with depth infinity:

svn up Awc/B

• Pull in a sub tree with depth immediates:
svn up –depth=immediates Awc/D

• Pull in a couple of files in an empty sub tree:

svn up Awc/D/sub1/foo.c Awc/D/sub1/bar.h

• Remove everything in a subdirectory and the subdirectory itself:

svn up --depth=exclude Awc/D

31 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Changelists

• A changelist associates multiple files together.

• Changelists are arbitrary labels applied to working copy files:

– Users are allowed to invent their own names.

– They are client-side, per-working-copy.

• Changelists are a way to separate and organize logical changes:

– Users create, view, and manipulate sets of files in a working copy by referring to
them by the changelist name.

• The changelist command allows a user to define a changelist with an
arbitrary UTF-8 name, as well as add member paths.

$ svn changelist MYCHANGE foo.c bar.c

Path 'foo.c' is now part of changelist 'MYCHANGE'.

Path 'bar.c' is now part of changelist 'MYCHANGE'.

32 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Changelists - usage

• A user working on more than one set of logical changes at a time.

– Reduce context-switching costs…

– But use with caution: working on multiple changelists in a working copy includes
the risk of committing something that doesn't build.

33 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Changelists (Cont’d)

• Changelists allow you to:

– Group a subset of local changes, and

– Run subcommands on those logical groups.

• Notes:

– A file can be in at most one changelist – no overlapping.

– A file being put into another changelist implicitly removes it from its current
changelist.

– Directories are not allowed in changelists – helps prevent overlaps.

– Once you commit, changelists disappear unless you indicate they should be retained
(i.e., use the commit command option --keep-changelists).

34 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Changelists – Supported Operations

• Define a changelist by explicitly adding/removing paths to it (changelist).

• See all existing changelist names and their member paths (status).

• Destroy a changelist definition all at once (changelist -R --remove --
changelist changelistname).

• Examine all edits within a changelist (diff).

• Revert all edits within a changelist (revert).

• Receive server changes only from paths within a changelist (update).

• Commit all edits within a changelist (commit).

• Fetch or set props on every path within a changelist
(proplist/propset/propedit/propget/propdel).

• Continue using a changelist after a commit
(commit --keep-changelist).

35 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Peg revisions

• A peg revision is a notation for a particular path at a particular revision.

• A peg revision looks first at the revision and then for the path.

• Many times, a peg revision resolves to the same path and revision as the –r
argument (which looks at the path and then finds the revision).

– i.e., -r 12 foo.c may be equivalent to foo.c@12

• A peg revision can resolve to a different path and revision when objects are deleted
or moved and other objects created with the same name. For example:

– Adding foo.c to Subversion and committing creates revision 101.

– Deleting foo.c from Subversion and committing creates revision 102.

– Adding foo.c to Subversion and committing creates revision 103.

– svn log –r101 foo.c returns nothing (i.e., fails as the current foo.c didn’t exist in revision
101).

– svn log foo.c@101 returns history of the first foo.c file.

mailto:foo.c@12
mailto:foo.c@101

36 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

• The URLs may include peg specifications:

– The format has the revision selector (if not HEAD or designated by peg notation)
first, followed by the URL and then the working copy path the external is checked
out or exported into.

– Peg specifications are allowed but not required.

• The URLs in an svn:externals specification can be relative.

– Four different relative externals are supported:

• ../: relative to the directory with the svn:external property

• ^/: relative to the repository root

• //: relative to the scheme

• /: server root relative URLs

– When Subversion sees an svn:externals without an absolute URL, it takes the first
argument (with the exception of a revision selector) as a relative URL and the
second as the target directory.

Externals details

 http://example.com/repos/zig foo1

-r 1234 http://example.com/repos/zag foo/bar1

 ../../component1/zig@HEAD foo2

 ../../component2/zag@1234 foo/bar2

37 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Externals example 1

• Map a file in one project to a working copy file in another project within the
same repository.

– On https://repo1/PROJECT1/trunk set the svn:externals property

 svn propset svn:externals “../../PROJECT2/trunk/readme@7654 readme2” .

https://repo1/PROJECT1/trunk

38 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Externals example 2

• Map directory in one project into a working copy directory referencing a project
in a second repository.

– On https://repo1/PROJECT1/trunk set the svn:externals property

 svn propset svn:externals “https://repo2/PROJECT1/tags/ver1.0 project2" .

https://repo1/project1/trunk

39 Copyright ©2015 CollabNet, Inc. All Rights Reserved. 39 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

Thank You

40 Copyright ©2015 CollabNet, Inc. All Rights Reserved. 40 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

About CollabNet

CollabNet is a leading provider of Enterprise Cloud Development and Agile ALM products and services for
software-driven organizations. With more than 10,000 global customers, the company provides a suite of
platforms and services to address three major trends disrupting the software industry: Agile, DevOps and hybrid
cloud development. Its CloudForge™ development-Platform-as-a-Service (dPaaS) enables cloud development
through a flexible platform that is team friendly, enterprise ready and integrated to support leading third party
tools. The CollabNet TeamForge® ALM, ScrumWorks® Pro project management and SubversionEdge source code
management platforms can be deployed separately or together, in the cloud or on-premise. CollabNet
complements its technical offerings with industry leading consulting and training services for Agile and cloud
development transformations. Many CollabNet customers improve productivity by as much as 70 percent, while
reducing costs by 80 percent.

For more information, please visit www.collab.net.

http://www.collab.net/

41 Copyright ©2015 CollabNet, Inc. All Rights Reserved. 41 Copyright ©2015 CollabNet, Inc. All Rights Reserved.

© 2014 CollabNet, Inc., All rights reserved. CollabNet is a
trademark or registered trademark of CollabNet Inc., in the US
and other countries. All other trademarks, brand names, or
product names belong to their respective holders.

CollabNet, Inc.
8000 Marina Blvd., Suite 600
Brisbane, CA 94005

www.collab.net

+1-650-228-2500
+1-888-778-9793
blogs.collab.net
twitter.com/collabnet
www.facebook.com/collabnet
www.linkedin.com/company/collabnet-inc

http://www.collab.net/
blogs.collab.net
twitter.com/collabnet
http://www.facebook.com/collabnet
http://www.linkedin.com/company/collabnet-inc
http://www.linkedin.com/company/collabnet-inc
http://www.linkedin.com/company/collabnet-inc
blogs.collab.net
http://www.facebook.com/collabnet
http://www.linkedin.com/company/collabnet-inc
twitter.com/collabnet

